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Abstract—Out-of-vocabulary (OOV) keywords present a
challenge for keyword search (KWS) systems especially in the
low-resource setting. Previous research has centered around ap-
proaches that use a variety of subwordunits to recoverOOVwords.
This paper systematically investigates morphology-based subword
modeling approaches on seven low-resource languages. We show
that using morphological subword units (morphs) in speech recog-
nition decoding is substantially better than expanding word-de-
coded lattices into subword units including phones, syllables and
morphs. As alternatives to grapheme-based morphs, we apply
unsupervised morphology learning to sequences of phonemes,
graphones, and syllables. Using one of these phone-based morphs
is almost always better than using the grapheme-based morphs,
but the particular choice varies with the language. By combining
the different methods, a substantial gain is obtained over the best
single case for all languages, especially for OOV performance.
Index Terms—Graphones, keyword search, morphological anal-

ysis, out-of-vocabulary (OOV)words, speech recognition, subword
units.

I. INTRODUCTION

V OCABULARY growth is an important issue for auto-
matic speech recognition, resulting in the twin problems

of sparse language model training data and out-of-vocabulary
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(OOV) words, i.e., words that appear in the test data but are
not seen in the training set and thus not represented in the rec-
ognizer vocabulary. OOV words are particularly a problem for
highly inflective and agglutinative languages, but they can pose
challenges for any language in the low-resource setting.
There are three types of applications that tend to have

somewhat different approaches to handling OOVs, though all
typically involve the use of sub-lexical or subword items in the
recognizer vocabulary. For open vocabulary word transcrip-
tion, subword items are chosen and represented in such a way
that orthographic forms can be recovered from the sequence
of recognized subwords. In human-computer interaction and
voice search, subwords are leveraged to facilitate detection of
OOVs and initiate a subdialog for paraphrasing or learning the
new word. In keyword search (KWS) or spoken term detection,
subwords are used to handle search terms that are OOV. In
open vocabulary recognition and keyword search settings,
the use of subwords can also help address the data sparsity
problem in language model training. In this work, we focus on
mitigating OOVs in keyword search, using methods informed
by work on open vocabulary recognition. In particular, the sub-
words being explored are morphology-based units, extending
our previously proposed work [1] by introducing alternatives
to grapheme-based morphs and experimentation with seven
languages.
A variety of methods have been used for deriving subwords,

which can be broadly classed as being based on phones or phone
n-grams, graphones, syllables, and morphologically based units
(possibly including bundles of morphemes) that we will refer to
as “morphs.” Graphones (orthography coupled with its corre-
sponding phone sequence) [2] and morphs are particularly well
suited to open vocabulary recognition. While some work has
based the vocabulary entirely on morphs (see [3], [4], [5] and
references therein), other studies obtain better results using a
combination of morphs and words in Arabic [6] and German
[7], [8]. However, a mixed word and syllable vocabulary out-
performed a mixed word and morph vocabulary for Polish [9].
A mixed word and graphone vocabulary has also been explored
for English [10]. Morphs have the potential advantage of in-
troducing more powerful constraints in language modeling, and
several studies have investigated novel language model struc-
tures that take advantage of morphological features in a variety
of languages [3], [5], [7], [9], [11], [12], [13], [14]. While these
studies motivate our use of morphs in this work, only standard
n-grams are used here since our focus will be primarily on the
keyword search strategies that take advantage of a mixed word
and morph or morph-only vocabulary.

2329-9290 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Illustration of alternative morphological subword units for a Zulu OOV word. “bundle” = pseudo-morph = grouping of graphemes/phones/graphones/
syllables. ‘:’ connects graphemes and phonemes as a graphone. ‘=’ connects phonemes as a syllable. ‘/’ separates morphs. Pronunciations are placed inside ‘[]’.
The phones in red font indicate the errors due to the loss of word context in pronunciation prediction for grapheme bundles. The phones in green font are the
corresponding correct ones in other bundles.

In keyword search, a standard approach for handling OOVs is
to transform a word lattice into a phone lattice when searching
for keywords [15], which can be augmented by phone con-
fusions [15], [16], [17], [18]. Directly indexing the output of
phone recognition tends to lead to much worse results [15],
but in [19], [20], it is shown that decoding with phone n-gram
units outperforms the word lattice transformation approach for
OOV terms when a flexible segmentation is used to incorporate
different order n-grams. Decoding with longer subword units
has also been shown to be effective, including pruned phone
n-grams [21], [22], phone or character multigrams [23], [24],
[25], graphones [26], syllables [27], [28] and morphs. Morphs
as subword units are particularly well suited to morphologically
rich languages, which have been investigated in [29], [30], [31]
and our previous work [1]. In contrast to subword-based ap-
proaches, OOV terms can also be searched from word lattices
for in-vocabulary (IV) proxies that are phonetically close [18],
[32], [33]. In this work, we focus on investigating alternative
subword decoding techniques to handle OOVs better. We have
not taken advantage of fuzzy search or proxy-based search on
the subword decoding systems for possible further improvement
due to the higher computation and implementation costs.
Unlike other subword units (e.g., phones), some of the

morphs tend to carry meaning and have reasonable average
length, leading to a balance between confusability and OOV
coverage. Morphs can be derived in an unsupervised fashion
from the training corpus for any language using Morfessor
[34], which is beneficial especially in the low-resource setting
where, for example, syllable annotations are not available.1
The majority of previous studies in the literature which

use morphs for ASR and KWS typically derive morphs from
grapheme sequences. However, when morphology learning
is unaware of pronunciations, segmentations may occur
mid-phoneme, e.g. the Zulu word “ithayima” was segmented
by Morfessor as “it/hayi/ma,” which incorrectly divides “t”
and “h” into two separate morphemes and leads incorrect pro-
nunciations. Even when the segmentation is correct, the lack of
context can lead to morph pronunciation errors or confusability.
Few studies (if any) have investigated the interaction between
morphology and pronunciations that affects ASR and KWS. In
this paper we attempt to study whether word phoneme sequence

1Morfessor’s approach is language-independent though it is generally most
effective for languages with a concatenative morphology.

(pronunciation) information helps morphology learning for
KWS, alone or in combination with graphemes. To answer
that, we implement two different pronunciation extraction
approaches for grapheme-based morphs and introduce methods
for integrating phone information into morphology learning
by grouping units that have some phonetic basis (specifically
phonemes, graphones or syllables) into a morph instead of
grouping grapheme units. To make this more concrete with
an example that we later expand on in Fig. 1, we contrast
morphology learning for the word “usiphethe” with sequences
comprised of:

graphemes (u s i p h e t h e)
phones (u s i p_h 3 t_h e)
graphones (u:u s:s i:i p,h:p_h e:3 t,h:t_h e:e)
syllables (u s=I p_h=3 t_h=e).

In general, we find a benefit from having the morph pro-
nunciations more tightly coupled to the word pronunciations,
either via the pronunciation extraction process or morphology
learning. Using Morfessor to derive phone-based morphs also
tends to result in a more compact subword vocabulary com-
pared to previous studied phone n-grams [19], [20], due to the
minimum-description-length principle, which forms the basis of
morphology learning.
In our previous pilot study [1], we have shown the effective-

ness of using morphs in mixed word and subword decoding
for Turkish KWS, and confirmed results from open vocabulary
recognition [3] that automatically-derived morphs identified
via unsupervised learning using Morfessor can achieve similar
performance of morphs identified by a rule-based system
designed for Turkish. In this work, we continue the work
with unsupervised morphology with the following novel ex-
tensions. First, we do a thorough examination of traditional
unsupervised grapheme-based morphs with a comparison on
7 low-resource languages that have different “richness” of
morphology. We investigate morph and language character-
istics that affect KWS performance across languages, and
analyze the importance of morph pronunciation and morph
length among other factors. Second, we introduce the use of
unsupervised morphology learning applied to phonetic units,
including phonemes, graphones and syllables as alternative
solutions to grapheme-based morphs. These alternative morphs
differ from the graphone-based morphs introduced in [8], which
aligned grapheme-based morphs to graphones, in that here we
apply the Morfessor algorithm directly to the phone, graphone



HE et al.: USING PRONUNCIATION-BASED MORPHOLOGICAL SUBWORD UNITS TO IMPROVE OOV HANDLING 81

or syllable sequence.2 By asking the learned morphological
segmentation to account for the phonetic sequence instead of
or in combination with the grapheme sequence, these variants
achieve significantly better performance on average across lan-
guages for both IV terms and OOV terms than grapheme-based
morphs due to more effective segmentations. Third, we show
that the combination of the output of both types of systems
significantly improves KWS performance especially for OOV
terms, due to the diversity of phonetic-unit-based morphs and
grapheme-based morphs. Lastly, we explore different decoding
and KWS strategies, showing that subword decoding with
morphs for OOV terms performs substantially better than
lattice/index transformation from word decoding (e.g., [15]).
In addition, the combination of the word-only system and
the subword-only system performs better than the individual
systems or the staging of them (word-based model for IV terms,
subword model for OOV terms).
In the sections to follow, we will review KWS in Section II,

introduce our methodology in Section III, describe the ex-
periment setup in Section IV, discuss experiment results in
Sections V and VI, analyze the results in terms of language
differences in Section VII, and conclude in Section VIII.

II. KEYWORD SEARCH OVERVIEW

Keyword search (KWS) is a task to locate all the occurrences
of given keyword queries in a corpus of untranscribed speech.
We consider in this paper the scenario where the keywords are
in text form and are specified after decoding and indexing are
done on the speech, which is also known as the task of spoken
term detection (STD). KWS has been studied since the 1980’s,
but it has been a more active area of research in the last decade
with a number of competitive evaluations emphasizing conver-
sational speech. In 2006, the U.S. National Institute of Stan-
dards and Technology (NIST) initiated an STD Evaluation [35]
focused on large-resource languages. Recently, there have been
a number of efforts on low resource scenarios and a competi-
tive evaluation associated with the Babel program.3 Since state-
of-the-art LVCSR systems generate far from perfect transcrip-
tions in low-resource languages on conversational speech, lat-
tice outputs of recognition systems are used to improve KWS
performance over 1-best outputs, especially in high WER situa-
tions [15], [36], [37]. The state-of-the-art KWS systems search
keywords from the index of lattices [38], [39], [40] or from the
index of confusion networks converted from lattices [41].
A widely used evaluation metric for KWS is the Actual

Term Weighted Value (ATWV) [35], introduced in the STD
2006 Evaluation and then becoming the official measure in the
Babel program. ATWV is one minus the average loss per term
for the actual decision threshold, where loss is a weighted sum
of the relative frequency of missed and false detection errors.
Since each term contributes equally to the average, the cost of
a miss is much more expensive for a rare term than for a term

2The idea of learning morphs from phonemes was independently and con-
currently explored by the Babelon IARPA team, as presented in a July 2014
meeting, but is unpublished and did not consider other phonetically grounded
units. Our results were also presented at that meeting.

3http://www.iarpa.gov/index.php/research-programs/babel

that appears several times [42], which drives the desire for
retrieving OOV keyword terms.
Because a global threshold needs to be set across keywords

for ATWV calculation, a variety of scoring normalization tech-
niques have been proposed recently [39], [40], [43], [44], [45].
We use the keyword-specific thresholding (KST) approach [43]
throughout the paper.

III. SUBWORD-BASED DECODING AND KWS
The general framework for our subword modeling approach

is the following. We first segment training words into subwords
and then derive their pronunciations. The resulting subwords
can be used by themselves in a decoding lexicon, or mixed
with the word-based decoding lexicon, in which case the orig-
inal word-based pronunciations are used for the full words. The
segmented training transcripts are utilized to estimate language
models for a subword-only vocabulary or a mixed word and
subword vocabulary. At test time, the recognition system pro-
duces subword-only and/or mixed-unit lattices, from which we
search for keywords with their subword and word represen-
tations. In KWS, OOV words are decomposed into subword
components, and IV words use both the full word and subword
decomposition.
The subwords being considered in this paper include varia-

tions of morphs and syllables. In the following subsections, we
will propose our method for designing alternative types of mor-
phological subword units (Section III-A), and then describe de-
tails of unsupervised morphology learning (Section III-B), pro-
nunciation derivation (Section III-C), and language modeling
(Section III-D), as well as how morphs are used in keyword
search (Section III-E).

A. Subword Alternatives
Morphological decomposition of words is typically done

in the orthographic form, which means each word is repre-
sented by a sequence of graphemes and split into one or more
non-overlapping morphs, so each morph is also represented by
a sequence of graphemes. As described next, the decomposition
can be automatically derived from the training corpus in an
unsupervised fashion through Morfessor, and then used in
analyzing new words. The morphology learning algorithm is
quite general, and we can provide it other types of sequences for
representing words, which can lead to different segmentations.
Fig. 1 shows the analysis of a word in Zulu for four different
variants that we consider: graphemes, phones, graphones, and
syllables. We refer to the morph variants as grapheme/phone/
graphone/syllable bundles throughout the rest of the paper,
where “bundle” refers to a morphological subword unit (or a
pseudo-morph) that groups graphemes, phones, graphones or
syllables. (Note that the graphone bundles here differ from the
graphone-based morphs used in [7], [8] in that our graphone
bundles are learned by applying Morfessor to the graphone rep-
resentation of words, rather than merging the morphs learned
from grapheme-based words with the graphone representation
of words.) For comparison, we also use syllables by themselves
as subword units without morphological analysis in the experi-
ment sections.
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The derivation of the pronunciation of a morph depends on
the symbol sequence it is based on. If the symbol sequence in-
cludes phones, then the pronunciation will be more accurate.
For the case where the morphs are based on graphemes, there
are different options for deriving the pronunciation. The figure
illustrates the particular case where the grapheme-based morph
pronunciation is derived via grapheme-to-phoneme (G2P) pre-
diction. The example shows that predicting subword pronuncia-
tions from subword-level G2P can be error-prone, since the con-
text of the subword within the word is lost, e.g., the grapheme
“e” is predicted as /e/ rather than /3/ given only the morph con-
text,4 while other bundles preserve the word-level pronuncia-
tion. Examples where context is important in other languages
include: ‘s’ word-finally in English as /s/ vs. /z/; insertion of an
inherent vowel /o/ or /O/ when two consonants exist in a row
in Assamese or Bengali except when a hoshonto character is
used to suppress it; and insertion of an inherent vowel /a/ after a
word-final consonant grapheme in Tamil but not a word-internal
consonant.

B. Unsupervised Morphology Learning

The subwords were learned in a fully unsupervised manner
using the morphological segmentation algorithm Morfessor
Categories-MAP [34], which has become a standard for
unsupervised morphological segmentation [46]. To obtain
word-internal segmentations, Morfessor recursively splits
words into subwords, and tries to find a lexicon of subwords
that is both complete and minimal given the corpus according
to a variant of the minimum-description-length principle. The
learned subwords are labeled as prefixes (PRE), stems (STM)
or suffixes (SUF) using a hidden Markov model to ensure
that all words consist of at least one stem with arbitrarily
many optional prefixes and suffixes ( in
regular-expression notation).
The degree of segmentation can be manipulated via Mor-

fessor’s perplexity threshold parameter , which controls the
likelihood of a given subword being a prefix or suffix in the
context of a word. The optimal value of this parameter is usu-
ally determined using a labeled development set [34], as its ef-
fect strongly depends on the morphological structure of the lan-
guage and the size of the training set. Since we do not have any
labeled data, we used an extensive search over to find a value
that minimizes the percentage of low-frequency subwords (that
occur times) in the lexicon while still providing high cov-
erage of the corpus. Note that this threshold is only used to de-
fine a tuning criterion; there are still many low-frequency sub-
words in the morphological analyses.
For the grapheme-based morphological segmentations, Mor-

fessor was applied to the raw text in standard orthography. For
the segmentations based on phonetic subword alternatives, the
words were mapped to their phone/graphone/syllable represen-
tations and the results of these mappings were fed into Mor-
fessor. The individual phones/graphones/syllables were marked
as atoms so that they could not be segmented.

4In this paper phones are written using the X-SAMPA symbols used in the
Babel language packs, which can be found at http://www.phon.ucl.ac.uk/home/
sampa/x-sampa.htm.

The inventory learned by Morfessor typically includes some
single symbol units, but it is not constrained to include all such
possible cases and in practice we find that not all are included.

C. Pronunciation Modeling for Subword Units
Pronunciations for subwords are needed both for decoding

within the ASR system and for the keyword search system. For
OOV words, irrespective of the subword approach, we require
a G2P system. We use the lexicon of the training set to train our
grapheme-to-phoneme system to predict word-level pronuncia-
tions for OOV keywords. We follow a joint multigram approach
utilized by the Phonetisaurus G2P toolkit [47]. This system pre-
dicts pronunciations based on a multigram alignment between
graphemes and phonemes; we train the alignment model using
the pronunciation lexicon for in-vocabulary words.
For grapheme-based morphs, we implement two different

methods for deriving pronunciations. First, we use the standard
G2P model trained on words to predict a single pronunciation
for each grapheme morph as would be done for new vocab-
ulary items. A limitation of this approach is the lost context
for short morphs, which can lead to poor pronunciations as
shown in the figure. As an alternative, we align each IV word’s
dictionary pronunciation to its morph sequence to extract
morph pronunciations, which yields multiple pronunciations
for each morph that occurs in different words. In the case of the
example in the figure, the “the” morph would then have both
[d e] and [t_h e] as alternative pronunciations, among a total
of 10 variants, which are all added to the subword decoding
lexicon. This approach leads to better coverage of the actual
pronunciation, but potentially more confusability. In either
case, the grapheme-based segmentations pose a challenge when
the segmentation break occurs mid-phoneme.
The phone bundle system uses the trained G2P system on

the OOV word to first predict pronunciations as a sequence of
phones, and then uses this as the representation to Morfessor
for morphological segmentation. An advantage is that pronun-
ciations are immediately readable from the morph identity, but
any graphemic clues to themorphological segmentation are lost.
By placing additional constraints on the G2P model, we can

also derive graphonic and syllabic representations for input to
Morfessor. The graphone-based system uses the G2P model
to find the best alignment between graphemes and phonemes;
the search is constrained to predict zero or more phonemes
for every grapheme (one-to-many alignment), but in post
processing graphemes with null pronunciation are combined
with the subsequent graphone pair (e.g., “p:- h:p_h” becomes
“p,h:p_h” in the graphone example in Fig. 1). This effectively
annotates the grapheme-based system with phonetic informa-
tion. On the other hand, the syllable-based system constrains
the G2P system to produce valid syllable structures as pronun-
ciations [27], which are then used as the input representation
for Morfessor.
For all but the G2P grapheme-based morphs, we find the

morph sequence for an OOV word by first applying G2P to
obtain the word-level pronunciation, optionally in graphone or
syllable form. Morfessor is used with the grapheme or other
symbol sequence to find the all possible segmentations. For the
grapheme-based models, each morph in a segmentation is then
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associated with a pronunciation using one of the two options
above. Note that because the morph inventory does not include
all possible single symbols, there will be somewords that cannot
be segmented with a particular morph inventory.

D. Subword-Based Vocabulary and Language Model

In our experiments, we consider different variations on the
vocabulary and language model (LM), including some using
only subword units and some using a mix of subword and word
units. All subword units are marked by % which distinguishes
them from the word tokens, and different types of subword
units, e.g., prefixes, stems, and suffixes, are indicated by the po-
sition of the %. For example, the English word “unbreakable”
would be segmented to “un%”, “%break%” and “%able” using
this notation. We train trigram, 5-gram and 7-gram LMs with
SRILM [48] using modified-Kneser-Ney smoothing. To control
for model size, we use entropy pruning to reduce the 5-gram and
7-gram LMs to be approximately the same size as the corre-
sponding trigram LM. However, in Section VI-D we show that
OOV keyword search performance using 5-gram and 7-gram
are comparable in our setting. Therefore, we use trigrams for
the remainder of the paper.
Subword-Only LM: In the subword-only scenario, the

training data is fully expanded into subwords using the most
likely word-to-subword decomposition.5 Language models are
trained on this expanded text, using a vocabulary that consists
only of the subword tokens in the expansion of the words
observed in the training set.
Mixed-Unit LM: In the mixed-unit scenario, three segmenta-

tions of the data are used to train the language models, including
the original word segmentation, the fully expanded (subword-
only) segmentation, and a mixed word-subword segmentation
that has been selectively expanded (details below). In all com-
ponent models for the mixed-unit LM for a particular subword
type, the vocabulary is the set of all words observed in the
training set and all subwords in the expanded version of these
words. We produce four mixed-unit language models:
1) A “fully decomposed” model trained on the fully expanded

data. Note that this model differs from the subword-only
LM in that this model includes all words in the vocabulary
with a small probability.6

2) A “partially decomposed” model trained on the selectively
expanded data.

3) A “2-interp” LM that is an equally weighted interpolation7
of the previous two LMs.

5If a word has multiple pronunciations in the provided dictionary, then each
pronunciation will have a different decomposition for phone, graphone and syl-
lable bundles. Preliminary experiments suggested that using the decomposition
based on the first pronunciation for the purpose of LM training works as well
as determining the pronunciation by forced alignment, and simplifies the pro-
cessing chain.

6This model is trained by estimating an n-gram trained on the subwords with
the constraint to match marginals to a unigram distribution that is the interpo-
lation of the subword unigrams and a uniform distribution over the full word
vocabulary, using a heuristically chosen interpolation weight.

7We notice in our preliminary experiments that the interpolation weights have
minimal impact on the keyword search performance. As it is expensive to tune
the interpolation weights based on the output of the speech recognition system
or the keyword search system, we fix the interpolation weights to be uniform
among LMs.

4) A “3-interp” LM that is an equally weighted interpolation
of the first two LMs and an LM trained on the original text
(words without segmentation).

The partially expanded text used in the “partially decom-
posed” model is produced by expanding only a subset of the
words in the text into their subwords, leaving other words intact.
The “expansion set” of words to be decomposed includes all
words that do notmeet any of the following (tunable) criteria:
i) appears more than times; ii) one of ’s subwords would
appear fewer than times in the expanded text; or iii) one of
’s subwords appears in fewer than words. A simple, iter-

ative algorithm is used to find the expansion set satisfying the
above criteria using (to avoid introducing infre-
quent subword units) and (to ensure that the most
frequent words were left intact).

E. Keyword Search

Our keyword search algorithm is based on index lookup: for
a word decoding system, we create a word-based index from
the lattices, tracking all of the words that occur in the lattice,
their start and end times, and their lattice posterior probabil-
ities. We use “lattice-tool” from SRILM [48] to convert lat-
tices to indices, where the time axis is quantized into points
with T seconds interval and T is optimized to 0.1 in our ex-
periments. Both start and end times of each hypothesized word
are mapped into the closest quantized time points, where same
word occurrences with the same times are merged by adding
the posteriors. The merged index has the flavor of confusion
networks [49] in the sense of summing the posteriors and pro-
viding alternative paths that might not be in the lattice for a
multiword term. For single-word keywords, we return the list
of all keyword occurrences, sorted by their posterior probabili-
ties. For multiword keywords, we retrieve the individual words
from the index in the correct order with respect to their start and
end times but discard occurrences where the time gap between
adjacent words is non-zero with respect to the quantized time
points.8 We approximate the multiword posterior with the min-
imum of the individual word probabilities as in [40], which we
also found slightly better than the product of the posteriors. All
the hypotheses of a keyword form a posting list. The detection
threshold in the list is determined separately for each keyword
using an empirical estimate of each keyword’s term weighted
value (TWV) [42]. The probabilities in each keyword’s posting
list are normalized using KST-normalization [43] to enable a
single, keyword-independent, detection threshold.
For a mixed-unit decoding or subword-only decoding system,

we follow the same search and thresholding algorithms, but the
index units would be whatever are chosen as the decoding units,
namely mixed words and subwords, or only subwords. For the
case of mixed-unit decoding, we also augment the index by
adding subwords expanded from the decoded words. During
search, each word of a keyword is represented by the word itself
and a subword sequence if it can be segmented. We consider all

8Initial versions of our system [1] allowed for a 0.5 second gap between key-
words, but in later experiments we found after tuning the allowable gap distance
on the development set that no gap reduced the false alarm rate, and thus im-
proved ATWV. In fact, time quantization already effectively allows a gap be-
tween adjacent words to recover misses.
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possible subword sequences if there are multiple segmentations
from different pronunciations for a word. For a single-word key-
word, we search from the mixed-unit or subword-only indices
for all representations of the word following the index lookup
approach described above. For a multiword keyword, its rep-
resentation for search would be the cross product of all the
representations of each component word. Currently each rep-
resentation for a keyword is equally weighted for simplicity.
KWS hyper-parameters (e.g., LM scale and posterior scale) are
tuned on development data separately for each system using the
Nelder-Mead optimization method [50].
Staging or system combination can be used for utilizing

multiple individual KWS systems. For staging/cascade (e.g.,
[15]), keywords that cannot be found with previous systems are
searched using subsequent systems. For example, we can search
IV keywords from word-decoded lattices, then search OOV
keywords from morph-decoded lattices, and finally search
phone lattices for OOV keywords that cannot be covered by the
IV morph inventory. In our initial experiments on Turkish using
grapheme bundle decoding, staging with phone lattices had
minimal impact, likely due to the high OOV coverage using the
morphs and the poor performance of the word lattice expansion
approach. Therefore, we decided not to do staging for OOVs
that cannot be covered. In further experiments, we found that
a system combination strategy gave better performance than
staging. Specifically, we use an approach that integrates the
posting lists from different systems and combines the scores
(e.g., [39], [43]). We tuned the posterior and language model
scaling factors for the best single system, and applied the
same factors to all other systems to ensure the score ranges are
compatible. The posting lists from each system are merged by
averaging the detection probabilities of overlapping entries.
KW-specific detection thresholds are determined using a de-
cision theoretic criterion [40]. Detection probabilities are then
normalized as in [43], and a single threshold for all KWs is
determined by Maximum Term Weighted Value (MTWV) [35]
on the development data. For OOV keywords, we also use this
strategy for combining multiple systems based on different
types of subword units.

IV. EXPERIMENT PARADIGM

A. Data Description
We evaluate the effectiveness of our proposed methods to

handle OOVs in the keyword search task on seven low-resource
languages provided by the IARPA Babel Program. We use the
conversational telephone speech portion of the 10-hour lim-
ited language pack (LimitedLP) training set for each language,
which has word-level transcriptions and a pronunciation lex-
icon. The development set for each language also contains 10
hours of speech with transcriptions. Our evaluation set is the
transcribed “eval-part1” set, which has about 15 hours of speech
for Tamil, and 5 hours for each of the other languages. The de-
velopment set is used to tune parameters, which are applied to
the evaluation set. We report results on both sets. The official
evaluation keyword list for each language is used for all experi-
ments. Table I lists the versions of the language packs and key-
word lists for all the data we use.

TABLE I
BABEL DATA DESCRIPTION FOR SEVEN LOW-RESOURCE LANGUAGES

INVESTIGATED IN THIS WORK

TABLE II
VOCABULARY SIZE, LM PERPLEXITY (PPL) AND WORD ERROR RATES
(%) FOR DEV AND EVAL SETS WITH WORD DECODING BASELINE

SYSTEMS USING A TRIGRAM LM

TABLE III
KEYWORD STATISTICS (IV AND OOV) IN THE DEVELOPMENT

AND EVALUATION SETS

B. ASR System

We use the Kaldi toolkit [51] to build a single automatic
speech recognition system prior to keyword search. Standard
13-dim PLP features combined with 3-dim Kaldi pitch fea-
tures [52] are first extracted as input for maximum likelihood
GMM-HMMmodel training. The features are then transformed
by linear discriminant analysis (LDA) and maximum likeli-
hood linear transform (MLLT). They are further adapted by
feature-space maximum likelihood linear regression (fMLLR),
which is estimated by speaker adapted training (SAT). The
GMM-HMM models are retrained with the resulting features
to provide the alignment for subsequent DNN-HMM hybrid
system training. A DNN with tanh neurons is trained using
the same speaker-adapted features. The details of the DNN
training are documented in section 2.2 in [53]. The baseline
language model for word decoding is a trigram with modi-
fied-Kneser-Ney smoothing and pruning. We follow the default
setup to train the acoustic model with position-dependent



HE et al.: USING PRONUNCIATION-BASED MORPHOLOGICAL SUBWORD UNITS TO IMPROVE OOV HANDLING 85

TABLE IV
SUBWORD DECODING VS. INDEX EXPANSION FOR OOV KEYWORDS ON THE DEVELOPMENT SET. #FA IS THE NUMBER OF FALSE ALARMS

triphones for word-based decoding. We train another acoustic
model with position-independent triphones for subword-based
decoding so that it can be reused for different types of subword
units.9 The word error rates for the baseline word decoding
systems are reported in Table II.

C. KWS Experiments
In the keyword lists, only those keywords that exist in the

data set would be counted towards the ATWV score. We list in
Table III the number of keywords that exist in either set. The
OOV keyword rates range from 8.6% to 37.5%. Note that the
term “keyword” in this paper refers to a query term, each of
which could be a word or a phrase. A keyword is considered
an OOV keyword when it has at least one OOV word in it.
To handle OOVs, we decode with the components and search
strategy described in Section III.
We present the KWS results in the next two sections. In

Section V, we describe a set of experiments using the grapheme
bundle morphs for subword decoding and keyword search. In
these experiments, we explore different decoding and indexing
alternatives and show the benefit of explicit subword decoding
for OOVs over the traditional word lattice/index expansion
approach. In Section VI, we compare the keyword search
performance across subword alternatives and show that adding
phonetic information in subword learning improves the system
performance over grapheme-based learning. In both sections
we analyze language differences. Since these differences imply
that there is no single best subword strategy, the best results are
obtained by the combination of all subword units.

V. GRAPHEME-BASED MORPH EXPERIMENTS

In this section, we empirically study the performance of
the typical grapheme-based morphs to explore the effect of
decoding vocabulary, keyword search strategy and pronunci-
ation modeling across languages, in order to identify a good
configuration for subsequent experiments with different types
of subwords.

A. Subword Decoding vs. Index Expansion
For OOV keywords, we compare two approaches to construct

subword indices: either by expanding the word indices from
a word-decoded system to subword indices, or by obtaining

9“Position" refers to word position (or subword position for subword de-
coding). Switching from position-dependent to position-independent triphones
modeling for subword decoding has minimal impact on the KWS performance.

subword indices directly from a subword-decoded system. The
OOV results for threemethods of expansion (grapheme bundles,
syllables, phones) are compared to grapheme-bundle subword
decoding in Table IV for Zulu and Turkish; results for other lan-
guages have a similar trend. No subword LMs are used in the
expansion. The grapheme bundles for subword-only decoding
use the morph-level G2P predicted pronunciations.
In both languages, subword decoding achieves much higher

OOV ATWV than all of the index expansion approaches;
phoneme expansion works better than syllable expansion,
which in turn is better than grapheme bundle expansion. Note
that phoneme search is much more time- and memory-con-
suming than any other methods. We measure the recall rate for
OOV keywords in the lattices, i.e. the percentage of OOV key-
words that have matches in the lattices (regardless of whether
their scores are above the KWS detection threshold). Phoneme
expansion has the highest recall as expected, so its posterior
scores must be worse than subword decoding due to the lower
ATWV. Subword decoding with grapheme bundles not only
has similar or higher recall than expanding word graphs with
grapheme bundles or syllables, but also has two or three times
as many hits as all the index expansion systems. These results
suggest that using subword decoding (with subword LMs)
is important for recognizing subword sequences reliably for
OOVs.

B. Mixed-Unit Decoding vs. Subword-Only Decoding
Table V shows in detail ASR and KWS results of three

different decoding vocabularies: words, mixed unit (words
and subwords), and subwords only, where the subwords are
grapheme bundles. Search level parameters, like lattice beam,
are fixed across languages, except language model weight,
which is tuned per language after lattices are generated. For the
purpose of calculating WER, lattices of the two subword-based
systems are first transduced into word-based lattices by com-
posing with a subword-to-word transducer which encodes word
segmentations. Note that in this case, the WER for mixed and
subword system must be taken with a grain of salt: we would
expect WER performance to be worse than the corresponding
word-based system because, for example, the subword hy-
pothesis space will not have the advantage of a word-based
language model.
The lattice densities for these systems are shown in Table VI;

lattices are more compact for subword systems. For the word-
based system, the OOVATWV results are achieved by phoneme
search via index expansion. All systems use trigram language
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TABLE V
VOCABULARY SIZES, WORD ERROR RATES AND OOV/IV/OVERALL ATWV
RESULTS FOR WORD-ONLY DECODING VS. MIXED-UNIT DECODING VS.
SUBWORD-ONLY DECODING WITH GRAPHEME BUNDLE UNITS ON THE

DEVELOPMENT SETS. RESULTS IN BOLD INDICATE THE BEST PERFORMANCE
ACROSS THREE SYSTEMS FOR EACH EVALUATION METRIC IN EACH

LANGUAGE RESPECTIVELY

models. The LM for the mixed-unit system is the 2-way in-
terpolation of the fully and partially segmented training text.
The word-based system has stronger LMs for in-vocabulary
words than subword-based systems, leading to clearly higher
IVATWV and lowerWER. The weaker subword-only language
model gives more opportunity for OOVwords to be represented
in the lattice, so usually achieves the highest ATWV on the
OOV terms and beats the phone expansion of the word-based
system for OOVs on all languages except Tamil. The mixed-unit
decoding tends to do better than the subword-only system on
IV words (and even better when using the 3-way interpolation
LM that includes the word n-grams), but not as good as the
word-based system. The mixed-unit system is rarely better than
the subword-only system, and we find that it is better to use

TABLE VI
RECOGNITION LATTICE DENSITIES (THE AVERAGE NUMBER OF ARCS
THAT CROSS A FRAME) FOR WORD-ONLY DECODING VS. MIXED-UNIT
DECODING VS. SUBWORD-ONLY DECODING WITH GRAPHEME BUNDLE

UNITS ON THE DEVELOPMENT SETS

TABLE VII
OOV ATWV AND OOV WORD PRONUNCIATION PHONE ERROR RATE (PER)
COMPARISON OF TWO GRAPHEME BUNDLE SUBWORD-ONLY SYSTEMS WITH
DICTIONARIES BASED ON DIFFERENT APPROACHES TO EXTRACT MORPH
PRONUNCIATIONS. RESULTS ARE REPORTED ON THE DEVELOPMENT SET.
RESULTS IN BOLD INDICATE BETTER PERFORMANCE BETWEEN THE TWO

SYSTEMS FOR EACH EVALUATION METRIC IN EACH LANGUAGE RESPECTIVELY

system combination than mixed unit decoding to combine the
benefits of words and subwords for KWS. We focus on the sub-
word-only systems for the rest of the experiments because of
their simplicity and better performance on OOVs.

C. Pronunciation Modeling
Directly predicting pronunciations at the morph level can

be error-prone due to the loss of word context, so we also
explore morph pronunciation extraction based on alignment of
the morph sequence to IV word pronunciations, as described
in Section III-C. The two different pronunciation derivations
are compared in terms of OOV ATWV using subword-only
decoding systems. Results on the development keyword set are
reported in Table VII, where “predicted” means the morph pro-
nunciations are predicted at the morph-level using the trained
G2P model and “aligned” indicates that the morph pronunci-
ations are generated through word-level grapheme-phoneme
alignment. We obtained moderate system improvement in 4
of the 7 languages by using the “aligned” morph pronunci-
ations. A likely reason why the “aligned” pronunciations in
some cases degrade performance is because they introduce
multiple pronunciations for each morph, which could also
increase the confusability during decoding. As illustrated by
the example in Section III-C, this is particularly an issue for
Zulu. Table VII also shows the OOV word pronunciation phone
error rate (PER), comparing the actual error for the “predicted”
model and the oracle error for the “aligned” model, where
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TABLE VIII
BASE UNIT INVENTORY SIZES FOR GRAPHEMES,

PHONES, GRAPHONES AND SYLLABLES

the oracle is obtained by choosing the lowest PER option of
the multiple possible morph sequence pronunciations. The
oracle PER is an optimistic estimate, but is used based on the
assumption that the acoustic model would tend to match the
lower PER option in recognition. As expected, the “aligned”
morph pronunciation model better matches the true OOV word
pronunciations, but the reduction in PER is not indicative of
improvement in ATWV because it does not account for the
confusability.

VI. PHONETIC MORPH EXPERIMENTS

In our second set of experiments, we explore different choices
of subword units as alternatives to grapheme bundles. Instead of
the original grapheme representation of words, we can represent
a word with a sequence of phones, graphones or syllables. With
the method described in Section III-A, we use Morfessor on top
of these representations to automatically learn phone bundles,
graphone bundles and syllable bundles as pseudo-morphs re-
spectively. In addition, we consider syllables by themselves as
another alternative subword type.
In the experiments, we mainly use grapheme bundles with

word-level aligned pronunciations as the baseline and for com-
bination, but we also show results of grapheme bundles with
morph-level predicted pronunciations as reference.

A. Morph Length & OOV Coverage
Table IX lists subword statistics for different languages. The

phone inventories for Assamese, Bengali and Tamil are smaller
than their grapheme inventories (Table VIII), which consist
of Indian scripts. The inventory size contributes to the morph
length, since in general unsupervised morph learning based on
a bigger base unit inventory tends to generate shorter morphs in
order to gain sufficient occurrences in multiple words. As a re-
sult, the average morph length (measured by “#phones/morph”,
Table IX) of their derived phone bundles is larger than that of
their grapheme bundles - a grapheme in the three Indian lan-
guages typically corresponds to a phoneme. Therefore, phone
bundles can effectively solve the over-segmentation problem
of grapheme bundles for languages with these characteristics.
Graphone bundles are shorter than both grapheme bundles

and phone bundles in the non-Indian languages likely due to
the larger graphone inventories. However, for Indian languages
graphone bundles are still almost as long as grapheme bundles,
suggesting that the phonetic information helps morph learning
(more discussion in Section VII).

TABLE IX
VOCABULARY STATISTICS FOR DIFFERENT SUBWORD UNITS. “BD” IS SHORT
FOR “BUNDLE”. PRONUNCIATIONS FOR GRAPHEME BUNDLE ARE GENERATED
BY WORD-LEVEL G2P ALIGNMENT. BEST CASE UNIT(S) FOR OOV ATWV

FOR EACH LANGUAGE IS INDICATED IN BOLD

Syllables as subword units are relatively short, each of which
has about 3 phones on average for all languages, and the syllable
boundaries need to be annotated by language experts (provided
by the language packs). Syllable bundles are derived in such a
way that they can make use of the syllable boundaries and are
longer than syllables for less confusability.
“OOV KW Coverage” in Table IX reports the percentage of

OOV keywords that can be fully represented by IV subwords in
the form of their segmentations (which is different than the key-
word OOV rate). Typically shorter subword types have higher
coverage.
A reason for the generally better coverage of the morphs than

syllables is that the Morfessor algorithm explicitly optimizes a
minimum description length criterion, which finds an efficient
code for characterizing words based on available training data.



88 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2016

TABLE X
NUMBER OF UNIQUE SINGLE PHONES AS GRAPHEME BUNDLES, PHONE

BUNDLES AND SYLLABLES, AND NUMBER OF PHONES FOR EACH LANGUAGE

Fig. 2. Phone error rate for development set keyword OOV word pronuncia-
tions comprised of subword pronunciations.

Depending on the complexity of syllables in the language, this
can be more or less of an advantage. The morphs do contain
substantially more single phones than do syllables (Table X),
but they do not include all possible phones and the number of
single phones is not a good indicator of OOVkeyword coverage.
In particular, the languages with the fewest single phone sylla-
bles (Zulu, Tagalog) have the highest coverage rates for sylla-
bles ( 93 ). The limited training scenario also plays a role:
Morfessor has worse coverage for syllable bundles due to the
large symbol set of syllable. In order to enhance the coverage of
syllable bundles, we expand the syllable bundle index back to a
syllable index before keyword search.

B. Morph Pronunciation
We construct pronunciations of OOV words in keywords by

putting together the pronunciations of all component subword
units. We measure the phone error rates of such OOV word pro-
nunciations in Fig. 2 and present the differences using different
subword types.10
Besides the grapheme bundles with aligned pronunciations,

phone bundles and graphone bundles have the lowest PER, be-
cause they are derived after the word-level G2P is applied to
OOV words. The phone error rates of phone and graphone bun-
dles are effectively 1/3–1/2 of that of grapheme bundles with
predicted pronunciations. For syllables and syllable bundles,
since each predicted syllable is forced to follow a legitimate syl-
lable structure learned during G2P training, the syllable-based

10If a word has multiple pronunciations provided by the development set lex-
icon, we compare the predicted pronunciation with all of them and report the
lowest PER.

Fig. 3. OOV ATWV on the evaluation sets with subword-only decoding using
5 different subword types, and with the combination of the 5 systems.

pronunciations are less accurate than those based on phone bun-
dles or graphone bundles.
The IV PER is 1.1–14.2% for grapheme bundles with pre-

dicted pronunciations, lower than their OOV PER, but 0 for
other subword types since their pronunciations are aligned
against the true word pronunciations from the training lexicon.

C. KWS Results
Keyword search results for OOV keywords based on sub-

word-only decoding are presented in Fig. 3 for all 5 types of
subword units. Adding phonetic information for morph learning
helps in general as the consequence ofmultiple factors including
reduced G2P errors, longer units and increased OOV coverage.
The best subword type varies due to characteristics of the lan-
guages. For all 3 Indian languages, all of the phonetic subword
types perform well due to the improved pronunciations. The
poor results for Turkish using syllables and syllable bundles are
likely due to their low coverage for OOV keywords (57.6%,
Table IX). Grapheme bundles perform reasonably well for lan-
guages where they are relatively long. Phone bundles seem to
be the best choice in general because they are simple and ef-
fective in most languages, and they do not require human an-
notation of syllables. The combination of all 5 subword units
improves OOV ATWV substantially, which indicates their di-
versity can reduce misses of OOV keywords although at the cost
of increased false alarms.
In order to further investigate when the corrected subword

pronunciations improve KWS performance, we also compare
the IV ATWV results across different subword types in Fig. 4.
For the IV words, the 4 non-grapheme-bundle subword types all
have perfect pronunciations, and all subword types have perfect
coverage. Phone bundles improve IV ATWV over grapheme
bundles for all languages except for Haitian-Creole likely
due to the already low PER for its grapheme bundles (1.1%).
This improvement for Tagalog, Assamese and Bengali is even
bigger than that in OOV keywords, partly due to their higher
IV PER reduction compared to other languages. The other
3 non-grapheme-bundle subword types are also better than
grapheme bundles except for Zulu and Haitian-Creole since
apparently morph length is still a confounding factor. Because
coverage is not a problem for IV keywords, Turkish syllables
and syllable bundles perform similarly to or slightly worse than
other bundles. Phone bundles are the best or among the best
consistently in all languages. The combination of all subword
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Fig. 4. IV ATWV on the evaluation sets with subword-only decoding using 5
different subword types, with the combination of the 5 systems, with the word-
only decoding baseline, and with the combination of the word-only decoding
baseline and the phone-bundle-only decoding system. “bd” is short for “bundle”.

units is less effective for IV keywords than OOV keywords,
likely because OOV ATWV is much more sensitive to missed
detection penalties according to the definition. However, the
word decoding baseline system performs even better than the
combination of all 5 subword systems for IV keywords. The
best system can be achieved by combining the word baseline
with the phone bundle system. Adding other subword systems
leads to minimal further improvement.
In most languages for both OOV and IV ATWV, the mor-

phological subword units based on phonetic information per-
form better than the grapheme bundles with aligned pronun-
ciations and even better than the ones with predicted pronun-
ciations. This suggests that not only do better morph pronun-
ciations help, but also adding pronunciations into morphology
learning is useful.

D. Effect of Higher Order LMs
In ASR experiments for morphologically rich and concate-

native languages, it has previously been shown, for example in
[4], that longer n-grams are beneficial for shorter sub-words.We
experimented with long-span n-grams for subword-only LMs,
comparing against trigrams for the purpose of OOV keyword
search and ASR. The results are given in Table XI. We con-
ducted this set of experiments on Bengali since it has both a rel-
ative long subword type (phone bundle, 1.9 morphs per word)
and a short subword type (grapheme bundle, 3.2 morphs per
word). For fair comparison, the number of n-grams for 5-gram
and 7-gram LMs are pruned using entropy pruning to be approx-
imately the same as that for 3-gram LMs. As shown in Table XI,
WER correlates with OOVATWVwell when different subword
types are compared. For each subword type, the difference of
OOV ATWV across LM order is minimal. Higher order LMs
seem to perform slightly worse than or just about the same as tri-
grams in terms of WER. We also tried using 5-gram and 7-gram
LMs that were not pruned to match the trigram size, but still did
not observe any significant performance improvement. In our
case, it appears that neither ASR nor KWS benefit from such
higher-order context, perhaps due to the data sparsity caused by
our 10-hour training set. Based on these results, we fixed our
LM choice to be trigram throughout the paper. Further evalua-
tions on more data and more languages could be future work for
interested readers.

TABLE XI
OOV ATWV AND WER ON THE DEVELOPMENT SET USING DIFFERENT
N-GRAM ORDER SUBWORD-ONLY LMS FOR EACH SUBWORD TYPE FOR
BENGALI. PRONUNCIATIONS FOR GRAPHEME BUNDLE ARE GENERATED
BY WORD-LEVEL G2P ALIGNMENT. AVERAGE NUMBER OF MORPHS

PER WORD FOR EACH SUBWORD TYPE IS ALSO LISTED

TABLE XII
SYSTEM COMBINATIONS FOR IV, OOV AND OVERALL ATWV ON THE

EVALUATION SETS. SYSTEMS: S0) WORD DECODING BASELINE: WORD SEARCH
FOR IV AND PHONE SEARCH FOR OOV (VIA INDEX EXPANSION). S1) IV: S0 +
PHONE BUNDLE SYSTEM; OOV: PHONE BUNDLE SYSTEM. S2) IV: S1; OOV:

COMBINATION OF SYSTEMS OF 5 SUBWORD TYPES

E. System Combination

The final system combination results are shown in Table XII.
The baseline is a word decoding system where OOV search
is handled by expanding word indices into phones. Using the
phone bundle subword-only decoding system for OOV and
combining it with the baseline for IV already provides good
gains over the baseline, which leads to significant improvement
in the overall ATWV with up to 0.05 absolute difference.
These results suggest that using morphology-based subword
units for decoding, especially those learned with phonetic
information, is effective to handle the data sparsity issue in
the low-resource setting for keyword search. This combination
is efficient because only one subword decoding is needed in
addition to the word decoding. If resources allow, combining
all 5 types of subword units for the OOV portion can achieve
further improvement in overall ATWV with up to 0.086 ab-
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solute difference compared to the word baseline, but with the
overhead of 5 decoding systems.

VII. ANALYSIS OF LANGUAGE DIFFERENCES

System performance for the different subword units varies
across languages, so it is of interest to examine language dif-
ferences. Zulu, Turkish and Tamil are agglutinative languages
with rich morphology. They have the largest vocabularies (#IV
words), leading to low trigram hit rates, high OOV rates and
high WER for recognition (Table II). Tagalog also has a rich
morphology, but it is less agglutinative and has non-concatena-
tive morphological features, such as infixation and reduplica-
tion. Conversational Zulu and Tagalog have a high ratio of code
switching with English, which partially causes the high G2P
phone error rates. Haitian-Creole has very limited productive
morphology, lacking any form of inflectional marking, but since
it is based on French, its words still reflect French derivational
morphology. Like many other Indo-European languages, As-
samese and Bengali are fusional languages, i.e. their rich mor-
phological systems involve non-concatenative morpheme com-
binations and changes in the form of the word stem triggered by
different morphemes.
Table IX statistics show that the grapheme bundles for the

three Indian languages (Assamese, Bengali and Tamil) are
relatively short (#phones per morph) so that they have the
highest OOV keyword coverage but at the cost of high acoustic
and lexical confusability. The large grapheme sets could be
a cause of this over-segmentation issue, which contributes to
the worse KWS performance on the Indian languages. Since
shorter units lead to high acoustic and lexical confusability,
the grapheme-based systems perform considerably worse
than the phone-based systems for the three Indian languages.
This difference for IV words is even more pronounced. We
fit a simple linear regression on the vocabulary statistics in
Table II and VIII to predict the morph length for each language
and found that the log of vocabulary size and the base unit set
size (#graphemes) are most correlated with the length of the
derived grapheme bundles. For the four non-Indian languages,
despite the fact that they are in different places on the spectrum
of morphological “richness” - Zulu and Turkish are highly
agglutinative, Tagalog has a rich, but partially non-concate-
native morphology, and Haitian-Creole has only very limited
morphology - the morph-based subword decoding approaches
works reasonably well on all of them.
One factor that appears to affect morph length resulting

from unsupervised learning is the base unit inventory size: in
general, a bigger inventory tends to produce shorter morphs in
order to obtain sufficient occurrences in multiple words. The
three Indian languages have bigger grapheme sets than the
other languages, which cause the over-segmentation issue for
their grapheme bundles; their smaller phone sets lead to phone
bundles being longer than grapheme bundles while maintaining
good coverage. Another factor is phonetic regularity. When we
used a graphone set for the Indian languages, despite it being
large, it leads to fewer morphs per word for graphone bundles
than grapheme bundles, likely because it makes the grapheme
set more specific. According to our one-to-many alignment
generation process, graphones are really graphemes annotated

with phonetic information - including this information allows
Morphessor to find more coherent, longer chunks. Switching
from graphemes to phones, graphones or syllables, the inherent
default vowel of consonants (see Section III-A) becomes
explicitly visible.
Besides morph length, there are other factors leading to

system performance differences. Syllable coverage is an issue
for Turkish OOV keywords. Pronunciation PER also has an
impact, but it is difficult to assess its role - PER reduction
correlates with IV ATWV improvement reasonably well but not
with OOVs since it interacts with morph length, OOV coverage
and other factors. In theory, Morfessor is expected to be more
effective on languages with concatenative morphology, but it
does not appear to be a deciding factor experimentally - Zulu
and Turkish perform well on OOV keywords while Tamil does
not. Besides concatenative morphology, the language-inherent
acoustic confusability certainly plays a role as well. Tamil is
the hardest even in the case of word decoding (Table II), since
their words are confusable in terms of pronunciation. All of
these factors interact to affect both ASR and KWS performance
across languages.

VIII. CONCLUSION
In this paper, we have systematically investigated the usage

of morphological subword units in KWS for handling the
OOV issue in the low-resource setting. We evaluate their
effectiveness in 7 languages that have different degrees of
morphology, ranging from highly agglutinative languages like
Zulu to languages with limited productive morphology like
Haitian-Creole. We show that the morphology-based subword
approach is effective in all languages but requires careful
choices of system components. First of all, subword decoding
is better than subword expansion from word decoding for
handling OOVs; it provides better subword posterior estimates.
Furthermore, pronunciations have an effect on morphological
decomposition and hence ASR and KWS performance. For
grapheme-based morphs, extracting morph pronunciations
based on alignments to whole word pronunciations gives
lower PER than predicting pronunciations for these morphs in
isolation, and for most languages results in improved KWS.
However, better results can be obtained by using subword
definitions that learn from pronunciations, either by applying
morphology learning to phone or graphone sequences or by
using syllables. These novel morphological subword units have
not only reduced pronunciation errors, but have also learned
morphology from phonetic regularity, which improved KWS
performance in both IV and OOV keywords. In addition, the
combination of multiple types of morphs is able to obtain
substantial improvement over individual systems especially on
OOV performance at the cost of multiple decodings.
We find that grapheme bundles on Indian languages do not

work well out of the box since the words are over-segmented,
which is possibly due to the specifics of the Indian scripts and
their relatively large grapheme sets combined with the small
amount of text available for morphology learning. The proposed
phone bundles have effectively solved both issues and have
better pronunciations, which turn out to be longer and perform
substantially better in KWS than grapheme bundles.
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As for all experimental work in speech recognition, the im-
provements obtained here need to be interpreted in the context
of the particular speech recognition technology used. In this
work, we have not taken advantage of fuzzy or proxy-based key-
word search techniques due to the higher computation and im-
plementation costs, but that may provide an alternative approach
for achieving performance gains. The rapid advances in neural
network-based systems may impact the findings. However, al-
gorithms for unsupervised morphology are also advancing with
the increasing interest in low resource languages, which could
increase impact and/or benefit from the generalization to more
phonetically-based analysis.
Although we focus on the application of keyword search, ap-

proaches proposed here could be adapted to other domains like
open vocabulary recognition and OOV detection. For example,
in open vocabulary recognition, word transcriptions can be de-
rived directly from the graphemes associated with graphone
morphs.
Future work may benefit from more sophisticated morpho-

logical feature-based approaches in language modeling which
would provide better models of long-span subword dependen-
cies, and better rescoring of putative subword hits in keyword
posting lists. Phonetically close IV morph sequences to a
keyword segmentation can be generated based on confusions,
which can be used in a fuzzy search strategy for detecting
keywords that are not covered or reducing misses for other
keywords. Considering code switching or morphology learning
for G2P might be useful to further reduce morph pronunciation
errors for languages like Zulu and Tagalog. In addition, a
principled framework that allows for tuning the morphological
analysis pipeline based on ASR and KWS performance directly
would potentially be helpful.
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